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Overview

> The typical parametric form of a 3-D line — six point and orientation parameters
and parametric term ¢t

> Roberts’ (1988) representation of a 3-D line — four point and orientation
parameters and parametric term ¢t

» Using a Gauss-Markov Model with redundant data (n/3 points)

» 6+ n/3 parameters and 2 constraints
» 4+ n/3 parameters with Roberts’ representation

> Using a Gauss-Helmert Model after eliminating n/3 parameters

» Model definition and setup
» A minimal parameterization for 3-D line fitting

> Total least-squares adjustment within the Gauss-Helmert Model
» Numerical example — the “Flight of the Bumblebee”
» Conclusions and outlook

» References
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The typical parametric form of a 3-D line — six point and orientation parameters

> Line B in parametric form with parameter t can be written as
B={p|p=a+tb, p=I[pspyps , —00<t<oc},
with six point and orientation parameters:
» a=Ja, ay, a,]" is a point on the line;
» b= [bx, by, b;]” defines the orientation of the line.
» But only four of the six parameters are independent!

» Roberts’ conditions: Force uniqueness by requiring b to be a unit vector with
b, > 0, and force uniqueness on a by requiring it to be the point of nearest
approach of line B to the origin.

b'b="bi+b,+bi=1, b, >0=b,:={/1-b2—b}

aTb - axbx Jr ayby + azbz - 0
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Roberts’ (1988) representation of a 3-D line — four point and orientation parameters

> Rotate the coordinate axes such that the positive z-axis is parallel with the (unit)
orientation vector b and

b2 byb,
1 - X — =Y b)(
ay 1+bz 1+bz o .
a=|a| =Ra= _ byby K b az| =>a=R'a
a 1+b; 1+b; y
_b)( _by bz
orthonormal

> The rotated x- and y-axis then span the so-called B-plane, which is normal to b.

> The point a lies at the intersection of the line B and the B-plane and has
coordinates (a1, az, 0) in the rotated coordinate system.

> Then, the point-and-orientation parameters for line B can be reduced to the four
independent terms a1, a2, bx, by with the (unit) orientation vector

;
b= [bx, by, b;:= {/1—b%—b%| andthe pointon line

b)z( _ b)(by —bx] T + a [ bxby b}z, T

Tirb Tib R i

a:a1[1
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Depiction of Roberts’ representation of a 3-D line

Line B defined by (o ,“ag, by, by)

Unit vectors in the original and rotated coordinate systems, y-axis omitted.
The B-plane contains the origin and is normal to the orientation vector b. The
point-on-line a has planar coordinates (a1, «z) in the rotated system.
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Using a Gauss-Markov Model for redundant data — conventional parameterization
> Given n/3 observed points p; = [x;, yi, z]" with random errors ei=[e;, ey, €;,]"
i={1,2,...,n/3}, for the k-th point, write observation equations:
Xk = ax + tbx + €x, Yk=ay+ tkby + €y, Zk=a:+ kb + €z,

» Then a system of n observation equations and two fixed-constraint equations
can be represented by a Gauss-Markov Model (GMM) with constraints:

)

y =A¢ +e, e~ (0,05P"), rtkA=m-—2,
nx1 mx1 nxn
ko = K &, k[AT|K']=m, m=6+n/3.
2xm
_ .. _[-ab - _[pT a’ |o...
£ - [axvayaazva7bjhbz7 t17' EEE) tn/3] , Ko = |:1 _ bTb:| ’ K= [2I§1G|2>f(nz/3] - |:0T 2bT 0...
> A Lagrangian approach to minimizing the random errors leads to the target
function
(€, N) == (y — A8) P(y — A¢) — 2X" (ko — K¢) = stationary.
[P

> The Euler-Lagrange necessary conditions lead to the normal equations

{% }E’THi]:{:O] with [N el =ATPAly], rkN=m-2.

» The least-squares estimator follows as
€= N¢'e+N KT KNG KT [ko— KN ' e], with Ni := (N+KTK), rk Nk = m.
mxm
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Using a Gauss-Markov Model for redundant data — Roberts’ parameterization

> Using Roberts’ (1988) parameterization, the (nonlinear) observation equations
for the kth observed point are modified to

2 bxby
1— b2 _
. 14+ /1—t2—t2 Ty /1-05—b) by .
k b X
y
Y| = a1 | _ by by +faz |q_ b + I + [ €y |-
Zk 1+/1—b2—b2 1+4/1—b2—b2 /1 _ b2 — bﬁ €z,
—bx —by

» Then a system of n observation equations (without constraints) can be
represented by a Gauss-Markov Model (GMM):

y =A¢ +e, e~ (0,05P"), tkA=m, m=4+n/3,
nxn

nx1 mx1

£ = [Ot)m Qy, bx7 by, t1, ey tn/g]T.
> The Lagrange target function is given by
d(e &, A) = (y — A)T P(y — A¢) = stationary.
3
» Which leads to the least-squares estimator

€=N"c, with [N |c]:=A"P[A|y], tkN=m.
mxm
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Using a Gauss-Helmert Model after eliminating n/3 parameters
> First, assume the conventional six-point-and-orientation parameterization.

» Introduce true variables gk = [fix, , fiy, , f12,]" for the kth measured point
P = [Xk, ¥k, k] ", with random errors ex, such that

‘:U’Xk =Xk Bxs My = Yk T By Hz 1= Zk T €z

> Then the parametric term f, can be written in terms of the true variables and the
point and slope parameters as

t = Hxe —8x _ Py —8y _ Mz — 8z
bx by bz ’

which can be used to write two non-linear condition equations for the kth data
point, thereby eliminating the parametric term t, and also the columns of zeros in
the constraint matrix K = [K; | Kz]

_ bz(ﬂxkfax)fbx(:uzkfaz) — 0 _
ouabn) = B =33 Bl 5] = 0] m= e

» Eliminate two more parameters by adapting Roberts’ representation:

&y 1 (a1, az, by, by, pk) = m {#Xk_
—an[1-62/ (1+/1-63—1) ] —a [—bxby/(H—m)] }—bx [z +arbtasby] =0,
P ,2(ar, az, by, by, pk) = m- {uyk*

—ay [1+bxby/(1+,/1fb)2(fb}2,)]fa2 [1fb}2,/<1+,/17b§—b}2,)] }fby [uzk+a1bx+a2by] =0.
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Using a Gauss-Helmert Model after eliminating n/3 parameters (continued)

> & (o, 0z, by, by, pk) = [k,1, ®k )" is nonlinear. Linearize using the Taylor
series expansion

(e, B, k) = Of + dd2, 4 - da + d% 4 - dB + dO, 4 - dpk + ...,
where a := [a1, 2], B := [by, by]", and the incremental vectors are defined by
€ =[da’, dB87]" := [dos, daa, dby, db,]’,
Ape = (X3, —xr Vh—H5, — €y Zk—Hi3, €] -
» Collect the first-order derivatives in matrices Ax and B such that

Ok Obk1 9Pk Odx1 Ok Obk1 9Pk
dayq dao Obyx by 0 Oux,  Opy,  Ouz,

A =[—dd? | —ddS (]=— By:=d®® , =
2><I§1 [ °"k| ﬁ’k] Odk2 Odko Odk2 Odk2 ’2><k3 ok Odk2 Odk2 Odk2

dayy dap Obx Oby a,uxk D,uyk 6#zk

together with the vector wy := ®% 4 By(p — u?), which for the kth point leads to
the system

wi = Ax& + Brex
when higher order terms of the Taylor series are neglected.

> Then, the system for all n/3 data points, together with the distribution of the
random error vector e, can be written as a Gauss-Helmert Model:

=A B ~ (0,05P"
(2n/v:I3,)><1 4§1 + ng17 e (070-0 n><n)7
with model redundancy r = 2n/3 — 4 in this example.
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TLS adjustment within the Gauss-Helmert Model

>

>

The following Lagrange target function, with (2n/3) x 1 vector of Lagrange
multipliers, is defined in order to minimize the random error vector e, while
satisfying the given model:

d(e, &, \) = e Pe+ 20" (w — A¢ — Be) = stationary.
XIPN

The Euler-Lagrange necessary (first-order) conditions are

19 _ pa_BTaco 19® _ _a15.o 19¢
256 = FE-BAZ0, S5c=-AAz0, S50

Solving the above system yields the parameter estimator

—w-—Af - Bé=0.

= [AT(BP—1BT)—1A]_1A’(BP—1BT)”W
|\

(2n/3)x (2n/3)

4x4

and the residual predictor
e=P 'B"-A=P 'BY(BP'B") " (w— Af).
Applying the law of variance propagation yields the estimated dispersion of £ as
N —1
b{é) = &2 [AT(BP*‘BT)*1A] ;
where 42 is an estimate for the variance component such that
r-65=8Pe=w'(BP'B")y'(w—-AE)=w'},
with r = 2n/3 — 4 being the system redundancy.

Both the estimator £ and the predictor & are unbiased since E{w} = At.
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Numerical Example — Flight of the Bumblebee

> The “Flight of the Bumblebee” data set as shown in Petras and Podlubny (2007).

» The data come from a random sample of n/3 = 50 points drawn from a
multivariate normal distribution with

0 1 1/5 7/10
mean p = |0| and covariance ¥ = | 1/5 1 o |,
0 7/10 0 1

generated using MATLAB functions rng (5, ' twister’) and
mvnrnd (@, 2, 50).
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Numerical Example — Flight of the Bumblebee (continued)
Estimated point &, orientation vector b, and their standard deviations derived from f){é}.

ax —0.067111 +0.091456

4= [ b b }T a4,  0.047785 +0.121017
g ) 4,  0.049820 +0.088503

a=nR(B)- [ A B o} = by  0.677404 +0.058450
b,  0.219309 +0.077523

by = \/1—-b2— b2 b,  0.702159 +0.056575

Estimated variance component: 65 = 0.764288. Redundancy: r = 2n/3 — 4 = 96.
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Conclusions and Outlook

» We have solved the 3D line-fitting problem by Total Least-Squares Adjustment
using a minimum parameterization within the Gauss-Helmert Model.

> This approach also allows estimation of a variance component and computation
of standard deviations for the parameter estimates, thus permitting statistical
hypothesis testing.

» The size of the matrix [BP~'B']~' depends on the number of measured points.

» However, the matrix is 2 x 2 block-diagonal for uncorrelated observations
(i.e., for a diagonal weight matrix P).

» This also turns out to be the case when there are correlations between
individual point coordinates (i.e., for a 3 x 3 block-diagonal weight
matrix P), but not among the points.

> Full details of this work will be presented in a future paper.
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