Fitting a Straight Line in Three-Dimensional Space by Total Least-Squares Adjustment

Kyle Snow and Burkhard Schaffrin

Division of Geodetic Science, School of Earth Sciences,
The Ohio State University, Columbus/Ohio, USA
Presented at the SIAM Annual Meeting, Chicago, 7-11 July 2014

- The typical parametric form of a 3-D line - six point and orientation parameters and parametric term t
- Roberts' (1988) representation of a 3-D line - four point and orientation parameters and parametric term t
- Using a Gauss-Markov Model with redundant data (n/3 points)
- $6+n / 3$ parameters and 2 constraints
- $4+n / 3$ parameters with Roberts' representation
- Using a Gauss-Helmert Model after eliminating n/3 parameters
- Model definition and setup
- A minimal parameterization for 3-D line fitting
- Total least-squares adjustment within the Gauss-Helmert Model
- Numerical example - the "Flight of the Bumblebee"
- Conclusions and outlook
- References
- Line B in parametric form with parameter t can be written as

$$
B=\left\{\boldsymbol{p} \mid \boldsymbol{p}=\boldsymbol{a}+t \boldsymbol{b}, \boldsymbol{p}=\left[p_{x}, p_{y}, p_{z}\right]^{T},-\infty<t<\infty\right\},
$$

with six point and orientation parameters:

- $\boldsymbol{a}=\left[a_{x}, a_{y}, a_{z}\right]^{T}$ is a point on the line;
- $\boldsymbol{b}=\left[b_{x}, b_{y}, b_{z}\right]^{\top}$ defines the orientation of the line.
- But only four of the six parameters are independent!
- Roberts' conditions: Force uniqueness by requiring \boldsymbol{b} to be a unit vector with $b_{z} \geq 0$, and force uniqueness on \boldsymbol{a} by requiring it to be the point of nearest approach of line \boldsymbol{B} to the origin.

$$
\begin{gathered}
\boldsymbol{b}^{\top} \boldsymbol{b}=b_{x}^{2}+b_{y}^{2}+b_{z}^{2}=1, \quad b_{z} \geq 0 \Rightarrow b_{z}:=\sqrt[+]{1-b_{x}^{2}-b_{y}^{2}} \\
\boldsymbol{a}^{T} \boldsymbol{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}=0
\end{gathered}
$$

- Rotate the coordinate axes such that the positive z-axis is parallel with the (unit) orientation vector \boldsymbol{b} and

$$
\boldsymbol{a}=\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right]=R \boldsymbol{\alpha}=: \underbrace{\left[\begin{array}{ccc}
1-\frac{b_{x}^{2}}{1+b_{z}} & -\frac{b_{x} b_{y}}{1+b_{z}} & b_{x} \\
-\frac{b_{x} b_{y}}{1+b_{z}} & 1-\frac{b_{y}^{2}}{1+b_{z}} & b_{y} \\
-b_{x} & -b_{y} & b_{z}
\end{array}\right]}_{\text {orthonormal }}\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
0
\end{array}\right] \Rightarrow \boldsymbol{\alpha}=R^{T} \boldsymbol{a}
$$

- The rotated x - and y-axis then span the so-called B-plane, which is normal to \boldsymbol{b}.
- The point \boldsymbol{a} lies at the intersection of the line B and the B-plane and has coordinates $\left(\alpha_{1}, \alpha_{2}, 0\right)$ in the rotated coordinate system.
- Then, the point-and-orientation parameters for line B can be reduced to the four independent terms $\alpha_{1}, \alpha_{2}, b_{x}$, b_{y} with the (unit) orientation vector

$$
\begin{gathered}
\boldsymbol{b}=\left[\begin{array}{ll}
b_{x}, & b_{y}, \quad b_{z}:=\sqrt[+]{1-b_{x}^{2}-b_{y}^{2}}
\end{array}\right]^{T} \text { and the point on line } \\
\boldsymbol{a}=\alpha_{1}\left[1-\frac{b_{x}^{2}}{1+b_{z}},-\frac{b_{x} b_{y}}{1+b_{z}},-b_{x}\right]^{T}+\alpha_{2}\left[-\frac{b_{x} b_{y}}{1+b_{z}}, 1-\frac{b_{y}^{2}}{1+b_{z}},-b_{y}\right]^{T} .
\end{gathered}
$$

Unit vectors in the original and rotated coordinate systems, y-axis omitted. The B-plane contains the origin and is normal to the orientation vector \boldsymbol{b}. The point-on-line \boldsymbol{a} has planar coordinates $\left(\alpha_{1}, \alpha_{2}\right)$ in the rotated system.

Using a Gauss-Markov Model for redundant data - conventional parameterization

- Given $n / 3$ observed points $\boldsymbol{p}_{i}=\left[x_{i}, y_{i}, z_{i}\right]^{T}$ with random errors $\boldsymbol{e}_{i}=\left[e_{x_{i}}, \boldsymbol{e}_{y_{i}}, \boldsymbol{e}_{z_{i}}\right]^{T}$, $i=\{1,2, \ldots, n / 3\}$, for the k-th point, write observation equations:

$$
x_{k}=a_{x}+t_{k} b_{x}+e_{x_{k}}, \quad y_{k}=a_{y}+t_{k} b_{y}+e_{y_{k}}, \quad z_{k}=a_{z}+t_{k} b_{z}+e_{z_{k}}
$$

- Then a system of n observation equations and two fixed-constraint equations can be represented by a Gauss-Markov Model (GMM) with constraints:

$$
\begin{array}{lll}
\underset{n \times 1}{\boldsymbol{y}}=A \underset{m \times 1}{\boldsymbol{\xi}}+\mathbf{e}, & \mathbf{e} \sim\left(\mathbf{0}, \sigma_{0}^{2}{\underset{n \times n}{-1}),}_{\text {rk } A=m-2,}\right. \\
\kappa_{0}=\underset{2 \times m}{K} \boldsymbol{\xi}, & \operatorname{rk}\left[A^{T} \mid K^{T}\right]=m, & m=6+n / 3 .
\end{array}
$$

$\boldsymbol{\xi}=\left[a_{x}, a_{y}, a_{z}, b_{x}, b_{y}, b_{z}, t_{1}, \ldots, t_{n / 3}\right]^{T}, \kappa_{0}=\left[\begin{array}{c}-\boldsymbol{a}^{T} \boldsymbol{b} \\ 1-\boldsymbol{b}^{T} \boldsymbol{b}\end{array}\right], K=\left[\underset{2 \times 6}{K_{1} \mid} \underset{2 \times n / 3}{K_{2}}\right]=\left[\begin{array}{cc|cc}\boldsymbol{b}^{T} & \boldsymbol{a}^{T} & 0 \ldots \\ \mathbf{0}^{T} & 2 \boldsymbol{b}^{T} & \ldots \ldots\end{array}\right]$

- A Lagrangian approach to minimizing the random errors leads to the target function

$$
\Phi(\xi, \lambda):=(\boldsymbol{y}-A \xi)^{T} P(\boldsymbol{y}-A \xi)-2 \lambda^{\top}\left(\kappa_{0}-K \xi\right)=\underset{\xi, \lambda}{\text { stationary }}
$$

- The Euler-Lagrange necessary conditions lead to the normal equations

$$
\left[\begin{array}{cc}
N & K^{T} \\
K & 0
\end{array}\right]\left[\begin{array}{c}
\hat{\xi} \\
\hat{\lambda}
\end{array}\right]=\left[\begin{array}{c}
c \\
\kappa_{0}
\end{array}\right], \quad \text { with } \quad\left[{ }_{m \times m}^{N} \mid \boldsymbol{c}\right]:=A^{T} P[A \mid \boldsymbol{y}], \quad \text { rk } N=m-2 .
$$

- The least-squares estimator follows as $\hat{\boldsymbol{\xi}}=N_{K}^{-1} \boldsymbol{c}+N_{K}^{-1} K^{T}\left[K N_{K}^{-1} K^{T}\right]^{-1}\left[\boldsymbol{\kappa}_{0}-K N_{K}^{-1} \boldsymbol{c}\right]$, with $\underset{m \times m}{N_{K}}:=\left(N+K^{T} K\right)$, rk $N_{k}=m$.
- Using Roberts' (1988) parameterization, the (nonlinear) observation equations for the k th observed point are modified to

$$
\left[\begin{array}{l}
x_{k} \\
y_{k} \\
z_{k}
\end{array}\right]=\alpha_{1}\left[\begin{array}{c}
1-\frac{b_{x}^{2}}{1+\sqrt{1-b_{x}^{2}-b_{y}^{2}}} \\
-\frac{b_{x} b_{y}}{1+\sqrt{1-b_{x}^{2}-b_{y}^{2}}} \\
-b_{x}
\end{array}\right]+\alpha_{2}\left[\begin{array}{c}
-\frac{b_{x} b_{y}}{1+\sqrt{1-b_{x}^{2}-b_{y}^{2}}} \\
1-\frac{b_{y}^{2}}{1+\sqrt{1-b_{x}^{2}-b_{y}^{2}}} \\
-b_{y}
\end{array}\right]+t_{k}\left[\begin{array}{c}
b_{x} \\
b_{y} \\
\sqrt{1-b_{x}^{2}-b_{y}^{2}}
\end{array}\right]+\left[\begin{array}{l}
e_{x_{k}} \\
e_{y_{k}} \\
e_{z_{k}}
\end{array}\right] .
$$

- Then a system of n observation equations (without constraints) can be represented by a Gauss-Markov Model (GMM):

$$
\begin{gathered}
\underset{n \times 1}{\boldsymbol{y}}=A_{m \times 1}^{\boldsymbol{\xi}}+\boldsymbol{e}, \quad \boldsymbol{e} \sim\left(\mathbf{0}, \sigma_{0}^{2}{\underset{n \times n}{-1}), \quad \text { rk } A=m, \quad m=4+n / 3,}_{\boldsymbol{\xi}=\left[\alpha_{x}, \alpha_{y}, b_{x}, b_{y}, t_{1}, \ldots, t_{n / 3}\right]^{T} .}\right.
\end{gathered}
$$

- The Lagrange target function is given by

$$
\Phi(\boldsymbol{e}, \boldsymbol{\xi}, \boldsymbol{\lambda}):=(\boldsymbol{y}-A \xi)^{\top} P(\boldsymbol{y}-A \xi)=\text { stationary } .
$$

- Which leads to the least-squares estimator

$$
\hat{\boldsymbol{\xi}}=N^{-1} \boldsymbol{c}, \quad \text { with } \quad\left[{ }_{m \times m}^{N} \mid \boldsymbol{c}\right]:=A^{T} P[A \mid \boldsymbol{y}], \quad \text { rk } N=m .
$$

Using a Gauss-Helmert Model after eliminating $n / 3$ parameters

- First, assume the conventional six-point-and-orientation parameterization.
- Introduce true variables $\mu_{k}=\left[\mu_{x_{k}}, \mu_{y_{k}}, \mu_{z_{k}}\right]^{T}$ for the k th measured point $\boldsymbol{p}_{k}=\left[x_{k}, y_{k}, z_{k}\right]^{T}$, with random errors \boldsymbol{e}_{k}, such that

$$
\mu_{x_{k}}:=x_{k}-e_{x_{k}}, \quad \mu_{y_{k}}:=y_{k}-e_{y_{k}}, \quad \mu_{z_{k}}:=z_{k}-e_{z_{k}} .
$$

- Then the parametric term t_{k} can be written in terms of the true variables and the point and slope parameters as

$$
t_{k}=\frac{\mu_{x_{k}}-a_{x}}{b_{x}}=\frac{\mu_{y_{k}}-a_{y}}{b_{y}}=\frac{\mu_{z_{k}}-a_{z}}{b_{z}}
$$

which can be used to write two non-linear condition equations for the k th data point, thereby eliminating the parametric term t_{k} and also the columns of zeros in the constraint matrix $K=\left[K_{1} \mid K_{2}\right]$

$$
\Phi_{k}\left(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{\mu}_{k}\right)=\left[\begin{array}{l}
b_{z}\left(\mu_{x_{k}}-a_{x}\right)-b_{x}\left(\mu_{z_{k}}-a_{z}\right) \\
b_{z}\left(\mu_{y_{k}}-a_{y}\right)-b_{y}\left(\mu_{z_{k}}-a_{z}\right)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad \kappa_{0}=\underset{2 \times 6}{K_{1} \boldsymbol{\xi}} .
$$

- Eliminate two more parameters by adapting Roberts' representation:
$\Phi_{k, 1}\left(\alpha_{1}, \alpha_{2}, b_{x}, b_{y}, \boldsymbol{\mu}_{k}\right):=\sqrt{1-b_{x}^{2}-b_{y}^{2}} \cdot\left\{\mu_{x_{k}}-\right.$
$\left.-\alpha_{1}\left[1-b_{x}^{2} /\left(1+\sqrt{1-b_{x}^{2}-b_{y}^{2}}\right)\right]-\alpha_{2}\left[-b_{x} b_{y} /\left(1+\sqrt{1-b_{x}^{2}-b_{y}^{2}}\right)\right]\right\}-b_{x}\left[\mu_{z_{k}}+\alpha_{1} b_{x}+\alpha_{2} b_{y}\right]=0$,
$\Phi_{k, 2}\left(\alpha_{1}, \alpha_{2}, b_{x}, b_{y}, \boldsymbol{\mu}_{k}\right):=\sqrt{1-b_{x}^{2}-b_{y}^{2}} \cdot\left\{\mu_{y_{k}}-\right.$
$\left.-\alpha_{1}\left[1+b_{x} b_{y} /\left(1+\sqrt{1-b_{x}^{2}-b_{y}^{2}}\right)\right]-\alpha_{2}\left[1-b_{y}^{2} /\left(1+\sqrt{1-b_{x}^{2}-b_{y}^{2}}\right)\right]\right\}-b_{y}\left[\mu_{z_{k}}+\alpha_{1} b_{x}+\alpha_{2} b_{y}\right]=0$.

Using a Gauss-Helmert Model after eliminating $n / 3$ parameters (continued)
$-\Phi_{k}\left(\alpha_{1}, \alpha_{2}, b_{x}, b_{y}, \boldsymbol{\mu}_{k}\right)=\left[\Phi_{k, 1}, \Phi_{k, 2}\right]^{T}$ is nonlinear. Linearize using the Taylor series expansion

$$
\Phi_{k}\left(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\mu}_{k}\right) \approx \Phi_{k}^{0}+d \Phi_{\boldsymbol{\alpha}, k}^{0} \cdot d \boldsymbol{\alpha}+d \Phi_{\boldsymbol{\beta}, k}^{0} \cdot d \boldsymbol{\beta}+d \Phi_{\mu, k}^{0} \cdot d \boldsymbol{\mu}_{k}+\ldots
$$

where $\boldsymbol{\alpha}:=\left[\alpha_{1}, \alpha_{2}\right]^{T}, \boldsymbol{\beta}:=\left[b_{x}, b_{y}\right]^{T}$, and the incremental vectors are defined by

$$
\begin{aligned}
\boldsymbol{\xi} & =\left[d \boldsymbol{\alpha}^{T}, d \boldsymbol{\beta}^{T}\right]^{T}:=\left[d \alpha_{1}, d \alpha_{2}, d b_{x}, d b_{y}\right]^{T} \\
d \boldsymbol{\mu}_{k} & :=\left[x_{k}-\mu_{x_{k}}^{0}-e_{x_{k}}, y_{k}-\mu_{y_{k}}^{0}-e_{y_{k}}, z_{k}-\mu_{z_{k}}^{0}-e_{z_{k}}\right]^{T} .
\end{aligned}
$$

- Collect the first-order derivatives in matrices A_{k} and B_{k} such that

$$
\underset{2 \times 4}{\boldsymbol{A}_{k}}:=\left[-d \Phi_{\alpha, k}^{0} \mid-d \Phi_{\boldsymbol{\beta}, k}^{0}\right]=-\left[\begin{array}{llll}
\frac{\partial \phi_{k, 1}}{\partial \alpha_{1}} & \frac{\partial \phi_{k, 1}}{\partial \alpha_{2}} & \frac{\partial \phi_{k, 1}}{\partial b_{x}} & \frac{\partial \phi_{k, 1}}{\partial b_{y}} \\
\frac{\partial \phi_{k, 2}}{\partial \alpha_{1}} & \frac{\partial \phi_{k, 2}}{\partial \alpha_{2}} & \frac{\partial \phi_{k, 2}}{\partial b_{x}} & \frac{\partial \phi_{k, 2}}{\partial b_{y}}
\end{array}\right], \underset{2 \times 3}{B_{k}}:=d \Phi_{\mu, k}^{0}=\left[\begin{array}{lll}
\frac{\partial \phi_{k, 1}}{\partial \mu_{x_{k}}} & \frac{\partial \phi_{k, 1}}{\partial \mu_{y_{k}}} & \frac{\partial \phi_{k, 1}}{\partial \mu_{z_{k}}} \\
\frac{\partial \phi_{k, 2}}{\partial \mu_{x_{k}}} & \frac{\partial \phi_{k, 2}}{\partial \mu_{y_{k}}} & \frac{\partial \phi_{k, 2}}{\partial \mu_{z_{k}}}
\end{array}\right],
$$

together with the vector $\boldsymbol{w}_{k}:=\boldsymbol{\Phi}_{k}^{0}+B_{k}\left(\boldsymbol{p}-\boldsymbol{\mu}_{k}^{0}\right)$, which for the k th point leads to the system

$$
\boldsymbol{w}_{k}=A_{k} \boldsymbol{\xi}+B_{k} \mathbf{e}_{k}
$$

when higher order terms of the Taylor series are neglected.

- Then, the system for all $n / 3$ data points, together with the distribution of the random error vector \boldsymbol{e}, can be written as a Gauss-Helmert Model:

$$
\underset{(2 n / 3) \times 1}{\boldsymbol{w}}=A \underset{4 \times 1}{\boldsymbol{\xi}}+B \underset{n \times 1}{\boldsymbol{e}}, \quad \mathbf{e} \sim\left(\mathbf{0}, \sigma_{0}^{2}{\underset{n}{n \times n}}_{-1}\right)
$$

with model redundancy $r=2 n / 3-4$ in this example.

TLS adjustment within the Gauss-Helmert Model

- The following Lagrange target function, with $(2 n / 3) \times 1$ vector of Lagrange multipliers, is defined in order to minimize the random error vector \boldsymbol{e}, while satisfying the given model:

$$
\Phi(\boldsymbol{e}, \boldsymbol{\xi}, \boldsymbol{\lambda})=\boldsymbol{e}^{T} P \boldsymbol{e}+2 \boldsymbol{\lambda}^{T}(\boldsymbol{w}-A \boldsymbol{\xi}-B \boldsymbol{e})=\text { stationary }
$$

- The Euler-Lagrange necessary (first-order) conditions are

$$
\frac{1}{2} \frac{\partial \Phi}{\partial \boldsymbol{e}}=P \tilde{\boldsymbol{e}}-B^{T} \hat{\boldsymbol{\lambda}} \doteq 0, \quad \frac{1}{2} \frac{\partial \Phi}{\partial \boldsymbol{\xi}}=-A^{T} \hat{\boldsymbol{\lambda}} \doteq 0, \quad \frac{1}{2} \frac{\partial \Phi}{\partial \boldsymbol{\lambda}}=\boldsymbol{w}-A \hat{\boldsymbol{\xi}}-B \tilde{\boldsymbol{e}} \doteq 0
$$

- Solving the above system yields the parameter estimator

$$
\hat{\boldsymbol{\xi}}=\underbrace{\left[A^{T}\left(B P^{-1} B^{T}\right)^{-1} A\right]^{-1}}_{4 \times 4} A^{\prime} \underbrace{\left(B P^{-1} B^{T}\right)^{-1}}_{(2 n / 3) \times(2 n / 3)} \boldsymbol{w}
$$

and the residual predictor

$$
\tilde{\boldsymbol{e}}=P^{-1} B^{T} \cdot \hat{\boldsymbol{\lambda}}=P^{-1} B^{T}\left(B P^{-1} B^{T}\right)^{-1}(\boldsymbol{w}-A \hat{\boldsymbol{\xi}}) .
$$

- Applying the law of variance propagation yields the estimated dispersion of $\hat{\xi}$ as

$$
\hat{D}\{\hat{\xi}\}=\hat{\sigma}_{0}^{2}\left[A^{T}\left(B P^{-1} B^{T}\right)^{-1} A\right]^{-1}
$$

where $\hat{\sigma}_{0}^{2}$ is an estimate for the variance component such that

$$
r \cdot \hat{\sigma}_{0}^{2}=\tilde{\boldsymbol{e}}^{\top} P \tilde{\boldsymbol{e}}=\boldsymbol{w}^{\top}\left(B P^{-1} B^{\top}\right)^{-1}(\boldsymbol{w}-A \hat{\xi})=\boldsymbol{w}^{\top} \hat{\boldsymbol{\lambda}},
$$

with $r=2 n / 3-4$ being the system redundancy.

- Both the estimator $\hat{\xi}$ and the predictor $\tilde{\boldsymbol{e}}$ are unbiased since $E\{\boldsymbol{w}\}=A \boldsymbol{\xi}$.
- The "Flight of the Bumblebee" data set as shown in Petras and Podlubny (2007).
- The data come from a random sample of $n / 3=50$ points drawn from a multivariate normal distribution with

$$
\text { mean } \mu=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \text { and covariance } \Sigma=\left[\begin{array}{ccc}
1 & 1 / 5 & 7 / 10 \\
1 / 5 & 1 & 0 \\
7 / 10 & 0 & 1
\end{array}\right]
$$

generated using MATLAB functions rng (5,'twister') and mvnrnd ($\boldsymbol{\mu}, \boldsymbol{\Sigma}, 50$).

Numerical Example - Flight of the Bumblebee (continued)
Estimated point $\hat{\mathbf{a}}$, orientation vector $\hat{\boldsymbol{b}}$, and their standard deviations derived from $\hat{D}\{\hat{\boldsymbol{\xi}}\}$.

$$
\left.\begin{array}{l}
\hat{\boldsymbol{\beta}}=\left[\begin{array}{ll}
\hat{b}_{x} & \hat{b}_{y}
\end{array}\right]^{T} \\
\hat{\boldsymbol{a}}=R(\hat{\boldsymbol{\beta}}) \cdot\left[\begin{array}{lll}
\hat{\alpha}_{1} & \hat{\alpha}_{2} & 0
\end{array}\right]^{T} \\
\hat{b}_{z}:=\sqrt{1-\hat{b}_{x}^{2}-\hat{b}_{y}^{2}}
\end{array}\right\} \Rightarrow \begin{array}{lrr}
\hat{a}_{x} & -0.067111 & \pm 0.091456 \\
\hat{a}_{y} & 0.047785 & \pm 0.121017 \\
\hat{a}_{z} & 0.049820 & \pm 0.088503 \\
\hat{b}_{x} & 0.677404 & \pm 0.058450 \\
\hat{b}_{y} & 0.219309 & \pm 0.077523 \\
\hat{b}_{z} & 0.702159 & \pm 0.056575
\end{array}
$$

Estimated variance component: $\hat{\sigma}_{0}^{2}=0.764288$. Redundancy: $r=2 n / 3-4=96$.

- We have solved the 3D line-fitting problem by Total Least-Squares Adjustment using a minimum parameterization within the Gauss-Helmert Model.
- This approach also allows estimation of a variance component and computation of standard deviations for the parameter estimates, thus permitting statistical hypothesis testing.
- The size of the matrix $\left[B P^{-1} B^{T}\right]^{-1}$ depends on the number of measured points.
- However, the matrix is 2×2 block-diagonal for uncorrelated observations (i.e., for a diagonal weight matrix P).
- This also turns out to be the case when there are correlations between individual point coordinates (i.e., for a 3×3 block-diagonal weight matrix P), but not among the points.
- Full details of this work will be presented in a future paper.
I. Petras and I. Podlubny. State space description of national economies: The V4 countries. Computational Statistics \& Data Analysis, 52(2):1223-1233, Oct. 2007.
A. J. Pope. Some pitfalls to be avoided in the iterative adjustment of nonlinear problems. In Proceedings of the 38th Annual Meeting of the ASPRS, pages 449-477, Falls Church, VA, 1972. American Society of Photogrammetry.
K. Roberts. A new representation for a line. In Proceedings of The Computer Society Conference on Computer Vision and Pattern Recognition, pages 635-640, Ann Arbor, Michigan, 1988. Computer Society Press.
B. Schaffrin and K. Snow. Total Least-Squares regularization of Tykhonov type and an ancient racetrack in Corinth. Linear Algebra and its Applications, 432(8): 2061-2076, Apr. 2010.

