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Overview

I The typical parametric form of a 3-D line – six point and orientation parameters
and parametric term t

I Roberts’ (1988) representation of a 3-D line – four point and orientation
parameters and parametric term t

I Using a Gauss-Markov Model with redundant data (n/3 points)

I 6 + n/3 parameters and 2 constraints
I 4 + n/3 parameters with Roberts’ representation

I Using a Gauss-Helmert Model after eliminating n/3 parameters

I Model definition and setup
I A minimal parameterization for 3-D line fitting

I Total least-squares adjustment within the Gauss-Helmert Model

I Numerical example – the “Flight of the Bumblebee”

I Conclusions and outlook

I References
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The typical parametric form of a 3-D line – six point and orientation parameters

I Line B in parametric form with parameter t can be written as

B = {p |p = a + tb, p = [px , py , pz ]T , −∞ < t <∞},

with six point and orientation parameters:

I a = [ax , ay , az ]T is a point on the line;

I b = [bx , by , bz ]T defines the orientation of the line.

I But only four of the six parameters are independent!

I Roberts’ conditions: Force uniqueness by requiring b to be a unit vector with
bz ≥ 0, and force uniqueness on a by requiring it to be the point of nearest
approach of line B to the origin.

bT b = b2
x + b2

y + b2
z = 1, bz ≥ 0⇒ bz := +

√
1− b2

x − b2
y

aT b = ax bx + ay by + azbz = 0
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Roberts’ (1988) representation of a 3-D line – four point and orientation parameters

I Rotate the coordinate axes such that the positive z-axis is parallel with the (unit)
orientation vector b and

a =

[
ax
ay
az

]
= Rα =:


1− b2

x
1+bz

− bx by
1+bz

bx

− bx by
1+bz

1− b2
y

1+bz
by

−bx −by bz


︸ ︷︷ ︸

orthonormal

[
α1
α2
0

]
⇒ α = RT a.

I The rotated x- and y -axis then span the so-called B-plane, which is normal to b.

I The point a lies at the intersection of the line B and the B-plane and has
coordinates (α1, α2, 0) in the rotated coordinate system.

I Then, the point-and-orientation parameters for line B can be reduced to the four
independent terms α1, α2, bx , by with the (unit) orientation vector

b =
[
bx , by , bz := +

√
1− b2

x − b2
y

]T
and the point on line

a = α1
[
1− b2

x

1 + bz
, − bx by

1 + bz
, −bx

]T
+ α2

[
− bx by

1 + bz
, 1−

b2
y

1 + bz
, −by

]T
.
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Depiction of Roberts’ representation of a 3-D line

B-plane

z

z

xx

b = zrot

RT b =
[

0
0
1

]

xrot

Line B defined by (α1, α2,bx ,by )

b

a = R
[ α1
α2
0

]

Unit vectors in the original and rotated coordinate systems, y -axis omitted.
The B-plane contains the origin and is normal to the orientation vector b. The
point-on-line a has planar coordinates (α1, α2) in the rotated system.
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Using a Gauss-Markov Model for redundant data – conventional parameterization

I Given n/3 observed points pi = [xi , yi , zi ]
T with random errors ei =[exi , eyi , ezi ]

T ,
i = {1, 2, . . . , n/3}, for the k -th point, write observation equations:

xk = ax + tk bx + exk , yk = ay + tk by + eyk , zk = az + tk bz + ezk

I Then a system of n observation equations and two fixed-constraint equations
can be represented by a Gauss-Markov Model (GMM) with constraints:

y
n×1

= A ξ
m×1

+ e, e ∼ (0, σ2
0P−1

n×n
), rk A = m − 2,

κ0 = K
2×m

ξ, rk
[
AT | K T ] = m, m = 6 + n/3.

ξ = [ax , ay , az , bx , by , bz , t1, . . . , tn/3]T , κ0 =

[
−aT b

1− bT b

]
, K = [ K1

2×6
| K2
2×n/3

] =

[
bT aT 0 . . .
0T 2bT 0 . . .

]
I A Lagrangian approach to minimizing the random errors leads to the target

function
Φ(ξ,λ) := (y − Aξ)T P(y − Aξ)− 2λT (κ0 − Kξ) = stationary

ξ,λ

.

I The Euler-Lagrange necessary conditions lead to the normal equations[
N K T

K 0

] [
ξ̂
λ̂

]
=

[
c
κ0

]
, with [ N

m×m
| c ] := AT P[A | y ], rk N = m − 2.

I The least-squares estimator follows as
ξ̂ = N−1

K c+N−1
K K T [KN−1

K K T ]−1[κ0−KN−1
K c], with NK

m×m
:= (N+K T K ), rk Nk = m.
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Using a Gauss-Markov Model for redundant data – Roberts’ parameterization

I Using Roberts’ (1988) parameterization, the (nonlinear) observation equations
for the k th observed point are modified to

[
xk
yk
zk

]
= α1


1− b2

x

1+
√

1−b2
x−b2

y

− bx by

1+
√

1−b2
x−b2

y

−bx

+α2


− bx by

1+
√

1−b2
x−b2

y

1− b2
y

1+
√

1−b2
x−b2

y

−by

+ tk


bx
by√

1− b2
x − b2

y

+

[
exk
eyk
ezk

]
.

I Then a system of n observation equations (without constraints) can be
represented by a Gauss-Markov Model (GMM):

y
n×1

= A ξ
m×1

+ e, e ∼ (0, σ2
0P−1

n×n
), rk A = m, m = 4 + n/3,

ξ = [αx , αy , bx , by , t1, . . . , tn/3]T .

I The Lagrange target function is given by

Φ(e, ξ,λ) := (y − Aξ)T P(y − Aξ) = stationary
ξ

.

I Which leads to the least-squares estimator

ξ̂ = N−1c, with [ N
m×m

| c] := AT P[A | y ], rk N = m.
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Using a Gauss-Helmert Model after eliminating n/3 parameters
I First, assume the conventional six-point-and-orientation parameterization.
I Introduce true variables µk = [µxk , µyk , µzk ]T for the k th measured point

pk = [xk , yk , zk ]T , with random errors ek , such that
µxk := xk − exk , µyk := yk − eyk , µzk := zk − ezk .

I Then the parametric term tk can be written in terms of the true variables and the
point and slope parameters as

tk =
µxk − ax

bx
=
µyk − ay

by
=
µzk − az

bz
,

which can be used to write two non-linear condition equations for the k th data
point, thereby eliminating the parametric term tk and also the columns of zeros in
the constraint matrix K = [K1 | K2]

Φk (a,b,µk ) =

[
bz(µxk − ax )− bx (µzk − az)
bz(µyk − ay )− by (µzk − az)

]
=

[
0
0

]
, κ0 = K1

2×6
ξ.

I Eliminate two more parameters by adapting Roberts’ representation:

Φk,1(α1, α2, bx , by ,µk ) :=
√

1−b2
x−b2

y ·
{
µxk −

−α1

[
1−b2

x
/(

1+
√

1−b2
x−b2

y

)]
−α2

[
−bx by

/(
1+
√

1−b2
x−b2

y

)]}
−bx

[
µzk +α1bx +α2by

]
= 0,

Φk,2(α1, α2, bx , by ,µk ) :=
√

1 − b2
x − b2

y ·
{
µyk −

−α1

[
1+bx by

/(
1+
√

1−b2
x−b2

y

)]
−α2

[
1−b2

y
/(

1+
√

1−b2
x−b2

y

)]}
−by

[
µzk +α1bx +α2by

]
= 0.
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Using a Gauss-Helmert Model after eliminating n/3 parameters (continued)

I Φk (α1, α2, bx , by ,µk ) = [Φk,1,Φk,2]T is nonlinear. Linearize using the Taylor
series expansion

Φk (α,β,µk ) ≈ Φ0
k + dΦ0

α,k · dα + dΦ0
β,k · dβ + dΦ0

µ,k · dµk + . . . ,

where α := [α1, α2]T , β := [bx , by ]T , and the incremental vectors are defined by

ξ = [dαT , dβT ]T := [dα1, dα2, dbx , dby ]T ,

dµk := [xk−µ0
xk−exk , yk−µ0

yk−eyk , zk−µ0
zk−ezk ]T .

I Collect the first-order derivatives in matrices Ak and Bk such that

Ak
2×4

:=[−dΦ0
α,k |−dΦ0

β,k ]=−

 ∂φk,1
∂α1

∂φk,1
∂α2

∂φk,1
∂bx

∂φk,1
∂by

∂φk,2
∂α1

∂φk,2
∂α2

∂φk,2
∂bx

∂φk,2
∂by

, Bk
2×3

:=dΦ0
µ,k =

 ∂φk,1
∂µxk

∂φk,1
∂µyk

∂φk,1
∂µzk

∂φk,2
∂µxk

∂φk,2
∂µyk

∂φk,2
∂µzk

,
together with the vector wk := Φ0

k + Bk (p − µ0
k ), which for the k th point leads to

the system
wk = Akξ + Bk ek

when higher order terms of the Taylor series are neglected.
I Then, the system for all n/3 data points, together with the distribution of the

random error vector e, can be written as a Gauss-Helmert Model:

w
(2n/3)×1

= A ξ
4×1

+ B e
n×1

, e ∼ (0, σ2
0P−1

n×n
),

with model redundancy r = 2n/3− 4 in this example.
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TLS adjustment within the Gauss-Helmert Model

I The following Lagrange target function, with (2n/3)× 1 vector of Lagrange
multipliers, is defined in order to minimize the random error vector e, while
satisfying the given model:

Φ(e, ξ,λ) = eT Pe + 2λT (w − Aξ − Be) = stationary
e,ξ,λ

.

I The Euler-Lagrange necessary (first-order) conditions are
1
2
∂Φ

∂e
= Pẽ − BT λ̂

.
= 0,

1
2
∂Φ

∂ξ
= −AT λ̂

.
= 0,

1
2
∂Φ

∂λ
= w − Aξ̂ − Bẽ .

= 0.

I Solving the above system yields the parameter estimator

ξ̂ =
[
AT (BP−1BT )−1A

]
︸ ︷︷ ︸

4×4

−1
A′ (BP−1BT )︸ ︷︷ ︸

(2n/3)×(2n/3)

−1
w

and the residual predictor

ẽ = P−1BT · λ̂ = P−1BT (BP−1BT )−1(w − Aξ̂).

I Applying the law of variance propagation yields the estimated dispersion of ξ̂ as

D̂{ξ̂} = σ̂2
0

[
AT (BP−1BT )−1A

]−1
;

where σ̂2
0 is an estimate for the variance component such that

r · σ̂2
0 = ẽT Pẽ = wT (BP−1BT )−1(w − Aξ̂) = wT λ̂,

with r = 2n/3− 4 being the system redundancy.
I Both the estimator ξ̂ and the predictor ẽ are unbiased since E{w} = Aξ.
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Numerical Example – Flight of the Bumblebee

I The “Flight of the Bumblebee” data set as shown in Petras and Podlubny (2007).
I The data come from a random sample of n/3 = 50 points drawn from a

multivariate normal distribution with

mean µ =

[
0
0
0

]
and covariance Σ =

[
1 1/5 7/10

1/5 1 0
7/10 0 1

]
,

generated using MATLAB functions rng(5,’twister’) and
mvnrnd(µ,Σ,50).
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Numerical Example – Flight of the Bumblebee (continued)

Estimated point â, orientation vector b̂, and their standard deviations derived from D̂{ξ̂}.

β̂ =
[

b̂x b̂y

]T

â = R(β̂) ·
[
α̂1 α̂2 0

]T

b̂z :=
+

√
1− b̂2

x − b̂2
y


⇒

âx −0.067111 ±0.091456
ây 0.047785 ±0.121017
âz 0.049820 ±0.088503
b̂x 0.677404 ±0.058450
b̂y 0.219309 ±0.077523
b̂z 0.702159 ±0.056575

Estimated variance component: σ̂2
0 = 0.764288. Redundancy: r = 2n/3− 4 = 96.
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Conclusions and Outlook

I We have solved the 3D line-fitting problem by Total Least-Squares Adjustment
using a minimum parameterization within the Gauss-Helmert Model.

I This approach also allows estimation of a variance component and computation
of standard deviations for the parameter estimates, thus permitting statistical
hypothesis testing.

I The size of the matrix [BP−1BT ]−1 depends on the number of measured points.

I However, the matrix is 2× 2 block-diagonal for uncorrelated observations
(i.e., for a diagonal weight matrix P).

I This also turns out to be the case when there are correlations between
individual point coordinates (i.e., for a 3× 3 block-diagonal weight
matrix P), but not among the points.

I Full details of this work will be presented in a future paper.
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